Predictive Maintenance Environment in Food Processing Plants Provides Early Warning System

Maintenance is moving from preventive to predictive mode with condition monitoring, maintenance system upgrades and the promise of easier integration.

By Bob Sperber, contributing editor

Share Print Related RSS
Page 2 of 3 1 | 2 | 3 View on one page

  • Multiple indicators per asset
  • One indicator can reset all other triggers for a given asset
  • Nesting of triggers with different cycles
  • Combining indicators using Boolean logic to create consolidated/alternate indicators
  • Forecasting future meter readings based on historical readings
  • Validating readings with a user-defined validation formula
  • Basing triggers on calculations of condition-based historical trends. For example, the average, average variance, sum, median, max or min of the last 10 readings can be used to establish control limits
  • User-friendly graphical interface features from color-coded alarm indicators, drill-down features and quick entry of new condition data

Overall, maintenance management systems are becoming more user-friendly in their features as well as in their underlying architectures and their ability to plug and play with condition monitoring solutions. SAP’s Plant Maintenance module and IBM’s Maximo are the 500-pound gorillas in the field.

Invensys offers an integrated platform, from Wonderware plant automation and MES offerings to maintenance systems and condition monitoring hardware and software. At Infor, the latest EAM upgrade adds predictive energy-oriented trending. IFS North America stresses a friendly new user interface as Synactive customizes the SAP front end with its GuiXT suite at Tyson Foods and Foster Farms. And MaintiMizer, a food-targeted CMMS from Ashcom Technologies Inc. expands its functional footprint with CIP routines for sanitation staff and others so that “production, research and QC departments can all operate with the same system,” according to Tim Good, president.

“But the food industry really hasn’t caught on yet,” adds Craig Miller, food accounts manager at Ashcom, Ann Arbor, Mich. “All the audits for food industry has to undergo — AIB, HACCP, GMPs — are taking all the spending. But it’s precisely the kind of data that CMMS systems collect and their auditing functions that can make these certification programs easier.”

“The whole shift today is that there's more integration coming into the picture,” says Wil Chin, director of field systems for ARC Advisory Group. Facing a proliferation of standards and no single best technology for integrating all applications, Chin says “There's always going to be more than once choice. The maintenance guy and the operator only want to view one application that can not only see the automation assets but the production assets — everything from motors to couplings — everything they think is critical should show up on one screen.”

This need is addressed in many kinds of systems, such as the MES systems that display Optimal Equipment Efficiency (OEE) data to both production and maintenance users. 

 

Ideally, maintenance and production should share at least some software, database and middleware tools to provide enterprise-wide asset management.

Maintenance and production share additional software, database and middleware tools to aggregate and apply advanced analytical algorithms to data from distributed process control systems and their Plant Asset Management software add-ons, historical databases and multiple condition monitoring databases. While these remain overkill for most food plants, the technology is creeping toward the mainstream. Additionally, control and software vendors are bringing to market maintenance software products that can support the data flow from control systems to MES systems.

For example, GE Fanuc in April added a “Maintenance Gateway” module to its Proficy automation suite that allows both maintenance and production to share real-time and OEE indicators. The system can reside on the plant floor, in the maintenance department or both. “Whatever pieces of our system you want to integrate, whether it's work order generation or vibration analysis or other condition monitoring measures, we'll provide out-of-the-box integration with EAMs,” says Brandon Henning, GE’s Global Industry Manager for Food & Beverage.

IBM's Maximo system is first with a full interface, to be followed by SAP, Oracle, Datastream and others, the company reports. Henning adds that OPC and other standard integration tools may fill the bill for users in the meantime.

Even at the lowest level of plant-floor automation, smart-transmitting sensors can report self-diagnostic data to warn technicians when they are about to fail. One example is the Ingold line of pH and dissolved oxygen sensors from Mettler-Toledo, Bedford, Mass. They include a smart chip in the sensor tip that diagnoses its own impedance and compares historic calibration trends. “So you can go into a predictive cycle, where the sensor tells you it's time to recalibrate or replace,” says Roger Goavert, engineering, procurement and construction projects manager with Mettler-Toledo Ingold.

From sensor to plant floor to management systems, industry standards are crucial to having these solutions interconnect and communicate with one another.

Standardizing CBM

As information technology and automation standards converge, reliability and maintenance vendors and end users (though none in the food industry yet) are rallying around Open O&M, an umbrella organization itself comprised of standards groups (MIMOSA, ISA, OPC Foundation, WBF and OAGi). The vision of the standard is broad, covering connectivity standards that span everything from sensors and data to front-office business systems.

Page 2 of 3 1 | 2 | 3 View on one page
Share Print Reprints Permissions

What are your comments?

You cannot post comments until you have logged in. Login Here.

Comments

No one has commented on this page yet.

RSS feed for comments on this page | RSS feed for all comments