Understanding and Preparing for FSMA's HARPC Requirements

Exploring the first step in preparing a facility’s food safety plan: the hazard analysis.

By Eric Lindstrom, formerly of Keller and Heckman LLP

1 of 2 < 1 | 2 View on one page

This article is the second in a series exploring the requirements of the Hazard Analysis and Risk-Based Preventive Controls (HARPC) of the FDA Food Safety Modernization Act (FSMA). The first article discussed the requirement for a written food safety plan under HARPC and its basic components, the facilities to which HARPC applies, and the facilities that are exempted in whole or in part from HARPC.

The ultimate goal of the hazard analysis under HARPC is to determine whether any preventative controls are required for the food, facility or both. Under this requirement, food facilities must prepare a written hazard analysis to identify and evaluate known or reasonably foreseeable hazards for each type of food manufactured, processed, packed, or held at the facility. Accordingly, a hazard analysis has two main components: (1) hazard identification and (2) hazard evaluation.

Hazard Identification

When identifying hazards, a facility must consider all known or reasonably foreseeable hazards. A “hazard” is simply something that has the potential to cause illness or injury. A “known or reasonably foreseeable hazard” is an important concept under HARPC and it means “a biological, chemical (including radiological), or physical hazard that is known to be, or has the potential to be, associated with the facility or the food.” Importantly, hazards can be naturally occurring, unintentionally introduced, or intentionally introduced for the purpose of economic gain.

FDA has described the hazard identification phase as a “brainstorming session” designed to develop a list of potential hazards. During this phase, facilities should consider illness data, scientific reports, its own experience and any other relevant information to determine hazards potentially related to its food or facility. Potential known or reasonably foreseeable hazards include radiological hazards, natural toxins, pesticides, drug residues, pathogens, decomposition, parasites, physical hazards (e.g., stones, glass, metal fragments), allergens, and unapproved food and color additives.

Hazard Evaluation

After hazards have been identified, each must be evaluated to determine if it requires a preventative control. The evaluation is carried out by “a person knowledgeable about the safe manufacturing, processing, packing, or holding of food.” The evaluation has two parts: (1) The severity of the illness or injury if the hazard were to occur and (2) the probability that the hazard will occur without preventive controls. Thus, a preventative control must be implemented for a reasonably foreseeable hazard if, after the hazard evaluation, “a person knowledgeable about the safe manufacturing, processing, packing, or holding of food” would establish one or more preventive controls to significantly minimize or prevent the hazard as appropriate to the food, the facility, and the nature of the preventive control and its role in the facility's food safety system.

The first step in hazard evaluation is determining the severity of the illness or injury posed by the identified hazard. This will again require facilities to consider illness data, scientific reports, its own experience and any other relevant information. The severity should include the magnitude and duration of the illness and the impact of any resulting chronic conditions. In other words, both short term and long term effects of exposure to the hazard should be considered.

As examples, FDA finds that biological hazards often lead to immediate illness or injury (e.g., gastrointestinal illness) and can lead to long-term consequences (e.g., infections with Salmonella spp. may lead to reactive arthritis). FDA also notes that the health effects related to exposure to some biological hazards are severe, such as Hemolytic Uremic Syndrome, otherwise known as HUS, in persons exposed to E. coli O157:H7 or invasive listeriosis in susceptible persons exposed to L. monocytogenes.

As further examples regarding chemical hazards, FDA finds that exposure can lead to immediate illness, such as, an allergic reaction to an undeclared peanut or to a residue in milk of penicillin used to treat the cow. However, long term effects should also be considered, such as impaired cognitive development in children exposed to lead in foods and liver cancer as the result of chronic exposure to aflatoxin. HARPC requires that hazards, such as the examples of biological and chemical hazards discussed above, be evaluated to determine whether they are reasonably likely to occur, even if the chemical hazard occurs infrequently.

1 of 2 < 1 | 2 View on one page
Show Comments
Hide Comments

Join the discussion

We welcome your thoughtful comments.
All comments will display your user name.

Want to participate in the discussion?

Register for free

Log in for complete access.


No one has commented on this page yet.

RSS feed for comments on this page | RSS feed for all comments