Powder purging
Storage of powder prior to processing presents yet another potential hazard. If powder doesn’t evacuate consistently from a storage silo, residue may accumulate and decay. This is especially liable to happen when the powder empties in a “core flow” or “channel flow” pattern, meaning that the center of the mass of powder drops faster than the powder on the outside.
This creates a first-in/last-out situation, where some of the powder lingers a long time (or indefinitely), which is the reverse of the first-in/first-out pattern that’s required in almost all processing. What’s desirable is “mass flow,” where all the powder evacuates evenly. Achieving this is a question of matching the interior wall surfaces and the slope and general design of the vessel to the powder’s characteristics.
“The food industry deals with organic solids materials [such] that if they stagnate, decay can take place,” says Herman Coello, product marketing manager for level products at Siemens Industry. “Thus, when dealing with cohesive and degradable powders, it is imperative that the silo or hopper is designed for a mass flow pattern.”
Coello adds that proper level sensing equipment can keep track of what’s in a silo without requiring it to be opened up, which is hazardous and interrupts operations. A few years ago, Siemens introduced a radar level sensor that operates at 80 GHz, emitting a narrow signal that could more reliably reach the bottom of a deep, narrow silo – the kind best suited to achieve mass flow with many kinds of powder.
Flow flaws
The challenges in handling powders extend beyond storage vessels. Variations in moisture, particulate size and shape and other parameters can lead to problems like sticking, bridging and clumping as the powder moves along a line. These can interfere the powder’s flow, causing processing interruptions or worse.
For a long time, the only way to measure these parameters was through sampling and off-line testing. But increasingly, in-line alternatives are available.
“Recent developments in in-line characterization mean that an increasing number of parameters can now be measured in situ,” says Laura Monington, applications specialist for Freeman Technology, a provider of flow-measurement technology. “The ability to make decisions without waiting for off-line results to be generated and interpreted means that critical process parameters such as impeller speed, transfer rate, component addition rates and environmental conditions can be rapidly adjusted to achieve and maintain optimal output.”
For example, a critical parameter is drag force flow, which is a measurement of the forces associated with movement of powder. It’s a function of material properties such as size, density, adhesion and strength. Freeman distributes a sensor from Lenterra that can be applied to operations such as blending, granulation, spray dying and feeding to determine drag force flow.
“Quantifying this property continuously in real time allows operators to react to changes and make necessary adjustments without interrupting the process,” Monington says.
Powder is one of the trickiest materials in food and beverage processing to handle safely. But the right equipment, combined with the right knowledge and awareness of the challenges and hazards, can make safe, consistent handling achievable.